These versions of the quantile functions take a vector of central probabilities as its first argument.
vector of probabilities.
vector of means.
vector of standard deviations.
logical; if TRUE, probabilities p are given as log(p).
One of "upper", "lower", or "both" indicating whether a vector of upper or lower quantiles or a matrix of both should be returned.
degrees of freedom (\(> 0\), maybe non-integer). df
= Inf
is allowed.
non-centrality parameter \(\delta\);
currently except for rt()
, only for abs(ncp) <= 37.62
.
If omitted, use the central t distribution.
qnorm(.975)
#> [1] 1.959964
cnorm(.95)
#> lower upper
#> [1,] -1.959964 1.959964
xcnorm(.95)
#>
#> If X ~ N(0, 1), then
#> P(X <= -1.959964) = 0.025 P(X <= 1.959964) = 0.975
#> P(X > -1.959964) = 0.975 P(X > 1.959964) = 0.025
#>
#> [1] -1.959964 1.959964
xcnorm(.95, verbose = FALSE, return = "plot") %>%
gf_refine(
scale_fill_manual( values = c("navy", "limegreen")),
scale_color_manual(values = c("black", "black")))
#> Scale for 'fill' is already present. Adding another scale for 'fill', which
#> will replace the existing scale.
#> Scale for 'colour' is already present. Adding another scale for 'colour',
#> which will replace the existing scale.
cnorm(.95, mean = 100, sd = 10)
#> lower upper
#> [1,] 80.40036 119.5996
xcnorm(.95, mean = 100, sd = 10)
#>
#> If X ~ N(100, 10), then
#> P(X <= 80.40036) = 0.025 P(X <= 119.59964) = 0.975
#> P(X > 80.40036) = 0.975 P(X > 119.59964) = 0.025
#>
#> [1] 80.40036 119.59964